Typen mit Ecken und Kanten

Selbsttätigkeit

MERO-Knoten oder ORBIT-Kugel:

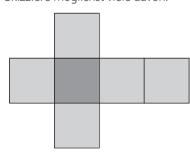
Das Ausstellungsobjekt besteht aus ORBIT-Kugeln und den Stäben mit sieben verschiedenen Längen aus dem Sortiment der Firma Syma-System AG.

1. Der kleinste Stab ist 250 Millimeter lang – von Knotenmitte zu Knotenmitte gemessen. Wie lang sind die anderen Stäbe? (Gib die exakten und gegebenenfalls die gerundeten Werte an.)

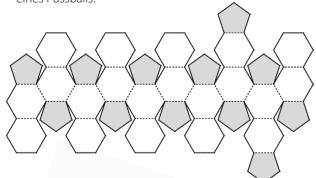
Was steckt sonst noch alles an Mathematik hinter diesem Objekt?

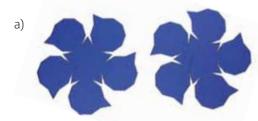
Körpernetze:

2. Zu einem Polyeder gibt es mehrere verschiedene Netze – mitunter sogar Tausende. Der Würfel besitzt beispielsweise elf. Skizziere möglichst viele davon.

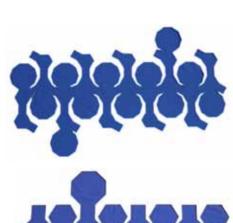


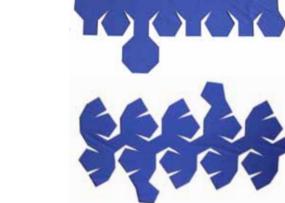
3. Beim Ausschneiden der Netze für die Polyedermodelle sind die Netznegative unten entstanden. Ordne jedes davon dem zugehörigen Polyeder zu. Als Beispiel diene dieses Netznegativ eines Fussballs:





b)





Eulerscher Polyedersatz:

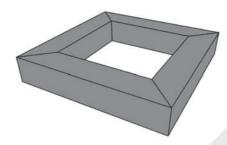
Erprobe den Eulerschen Polyedersatz an den platonischen und an anderen Körpern.

Körper	е	f	k	e+f-k
Tetraeder				
Hexaeder				
Oktaeder				
Dodekaeder				
Ikosaeder				

4. Woran erkennt man in der Tabelle die Dualität gewisser Körperpaare?

- **5. Bau mit Teilen** des Polyeder-Bausatzes Körper Deiner Wahl nach. Bestimme *e, f* und *k*.
- **6. Such Dir archimedische** Körper aus und ordne ihnen ihre dual-archimedischen Körper zu.

7. Warum wurde für das Standardmodell des Fussballs das Ikosaeder und nicht das Dodekaeder als Grundkörper gewählt?



8. Der abgebildete "Serviettenring" ist ein nicht-konvexes Polyeder. Zeige, dass bei ihm der Eulersche Polyedersatz verletzt ist.

Winkeldefizite bei konvexen Polyedern:

Die Summe der ebenen Winkel in einer konvexen Polyederecke ist kleiner als der Vollwinkel von 360°. Zu jeder Polyederecke gibt es also ein Winkeldefizit als Ergänzung auf 360°. Zwei Beispiele:

Polyeder	е	Winkeldefizit an einer Ecke	Winkeldefizit total
Reguläres Tetraeder	4	360° – 180° = 180°	720°
Würfel	8	360° - 270° = 90°	720°

9. Erprobe weitere Beispiele und erhärte so den Satz des französischen Philosophen und Mathematikers René Descartes (1596–1650): "Das totale Winkeldefizit eines konvexen Polyeders ist 720°."

